

990 Vibration Transmitter

Bently Nevada* Asset Condition Monitoring

Description

The 990 Vibration Transmitter is intended primarily for the original equipment manufacturers (OEMs) of centrifugal air compressors or small pumps, motors, or fans who prefer to provide a simple 4 to 20 mA proportional vibration signal as the input to their machinery control system. The transmitter is a 2-wire, loop-powered device that accepts input from our 3300 NSv* proximity probe and its matching extension cable (available in 5 m and 7 m system length options). The transmitter conditions the signal into appropriate peak-to-peak vibration amplitude engineering units, and provides this value as a proportional 4 to 20 mA industry-standard signal as the input to the control system where machinery protection alarming and logic occurs¹.

The 990 transmitter provides the following notable features:

- Integrated Proximitor* Sensor requires no external unit
- Non-isolated "PROX OUT" and "COM" terminals plus a coaxial connector to provide a dynamic vibration and gap voltage signal output for diagnostics².
- Non-interacting zero and span potentiometers under the Transmitter label supports loop adjustment.
- Test Input pin for quick verification of loop signal output, using a function generator as the input.
- A Not OK/Signal Defeat circuit prevents high outputs or false alarms due to a faulty proximity probe or loose connection.
- Choice of DIN-rail clips or bulkhead mounting screws as standard options simplifies mounting.
- Potted construction for high humidity (up to 100% condensing) environments.
- Compatibility with 3300 NSv proximity probe allows transducer installation in small areas with minimal clearance, typical of centrifugal air compressors.

Notes:

1. Vibration transmitters have many limitations when compared to a continuous vibration monitoring system. They are a practical solution in some applications for measuring general vibration levels and are a valuable tool for overall vibration trending. However, they provide limited capability for machinery diagnostics using the vibration signal and do not capture dynamic vibration signals (used for diagnostics) in the event of a vibration alarm. While the

imagination at work

Specifications and Ordering Information

Part Number 141612-01

Rev. M (02/15)

Page 1 of 14

transmitter is capable of peak vibration alarming and non-OK checking, the 4-20 mA signal cannot be used to determine the phase of vibration, and monitor functions such as gap alarms, phase alarms, Timed OK channel defeat, Danger Bypass, and Trip Multiply cannot be used. In addition, PLCs attached to the vibration transmitter can only provide peak-to-peak trending data and are not suitable for plant-wide diagnostic systems such as System 1 or Rule Paks.

2. The 990 Vibration Transmitter's "Prox Out" coaxial connector provides a non-isolated dynamic transducer signal for machinery diagnostics. You can connect this signal directly to battery-powered or isolated test equipment to diagnose machinery problems. However, since the "PROX OUT" signal is not isolated from the 4 to 20 mA loop signal, an interface is available (and strongly recommended) for signal isolation. The 990/991 Test Adapter conditions the 990 Transmitter's "PROX OUT" signal for use with ac-powered test equipment. It also inverts and isolates the 990's transducer signal, making it suitable for equipment such as oscilloscopes and analyzers, and preserving industry-standard conventions for signal polarity. We strongly recommend the use of this test adapter for all applications to maintain isolation between test equipment and the loop signal, and ensure that the installation maintains machinery protection integrity.

Specifications

Unless otherwise noted, the following specifications apply at +22 °C (+72 °F) using a 3300 NSv Probe and Extension Cable, and an AISI 4140 steel target.

Note: These specifications also apply to 990 with modifications 147202-01 and 165335-01.

Electrical

Input

Accepts 1 non-contacting 3300 NSv Proximity Probe and extension cable.

Power

Requires +12 to +35 Vdc input at the transmitter terminal.

4 to 20 mA Signal Output

4 to 20 mAdc over specified full-scale range in 2-wire configuration.

4 to 20 mA Loop Accuracy

Within $\pm 1.5\%$ over specified full-scale range. Accuracy is rated from the TEST signal input to the voltage measured across a 250 Ω loop resistance.

Probe Gap

Probe must be gapped between 0.5 and 1.75 mm (20 and 55 mils) from target to ensure full scale range.

Maximum Loop Resistance

1,000 Ω including cable at 35 Vdc.

Current Limiting

23 mA typical.

Zero and Span

Non-interacting external adjustments.

NOT OK/Signal Defeat

Signal output will go to less than 3.6 mA within 100 μ s after a Not OK condition occurs. Signal output is restored within 2-3 seconds after the Not OK condition is removed.

Power-up Inhibit

Signal output stays at less than 3.6 mA (NOT O.K.) for 2 to 3 seconds after power is applied. The purpose is to signal that the device is not yet ready. Transients may be observed when device goes O.K.

Proximity Sensor Output

Compatible with ungrounded, portable test equipment. When using grounded, ac-powered test equipment, use the 122115-01 Test Adapter for signal isolation.

Output Impedance

Prox Out has a 10 $k\Omega$ output impedance calibrated for a 10 $M\Omega$ load.

Prox Out Linear Range

1.4 mm (55 mils). Begins at approximately 0.25 mm (10 mils) from target surface.

Prox Out Incremental Scale Factor

7.87 mV/ μ m (200 mV/mil) $\pm 6.5\%$ typical including interchangeability errors when measured in increments of 0.25 mm (10 mils) over the linear

	range using a flat 30 mm (1.2 inch) target. Worst case 7.87 mV/ μ m \pm 10%. Typical Noise Level: 50 mV/pp.	Compliance and Certifications
Temperature Stability		EMC
	Incremental scale factor remains within \pm 10% of 7.87 mV/ μ m (200 mV/mil) from 0 °C to +70 °C (+32 °F to +158 °F).	Standards: EN 61000-6-2 Immunity for Industrial Environments EN 55011/CISPR 11 ISM Equipment EN 61000-6-4 Emissions for Industrial Environments
Frequency Response	5 Hz to 6,000 Hz +0, -3 dB.	European Community Directives: EMC Directive 2004/108/EC
Minimum Target Size	9.5 mm (0.375 in) diameter.	Electrical Safety
Leadwire Length	Maximum for Proximitor* Sensor Output (BNC connector), maximum cable distance is 3 metres (10 feet).	Standards: EN 61010-1
Non-Hazardous, Zone 2 or Div 2 Hazardous area locations	13 km (8 miles) maximum between transmitter and receiving device for signal output.	European Community Directives: 2006/95/EC Low Voltage
Intrinsically Safe Hazardous area locations	68 metres (225 ft.) maximum between transmitter and receiving device for signal output.	For further certification and approvals information please visit the following website: www.ge-mcs.com/bently
Electrical Classification:	General Purpose Approval by Canadian Standards Association (CSA/NRTL/C) in North America and by VDE in Europe. 990 has the CE mark for Europe.	Hazardous Area Approvals
		CSA/NRTL/C
		Class I, Div 2 Groups A, B, C, D T5 @ Ta \leq +85°C, Type 4 Per Drawing 128838
		KTL/KC
		Ex ia IIC T4 Ga T4 @ -20°C \leq Ta \leq +100°C
		Ex nA IIC T4 Gc T4 @ -35°C \leq Ta \leq +85°C
		ATEX
		Ex ia IIC T4 Ga T4 @ -35°C \leq Ta \leq +85°C
		Ex nA IIC T4 Gc T4 @ -35°C \leq Ta \leq +85°C
		IECEx
		Ex ia IIC T4 Ga T4 @ -35°C \leq Ta \leq +85°C

Ex nA IIC T4 Gc
T4 @ -35°C ≤ Ta ≤ +85°C

Maritime Approvals

American Bureau of Shipping (ABS) Type Approval

Certification Number

06-HS177078-3-PDA

Environmental Limits

Transmitter Temperature

Operating Temperature

-35 °C to +85 °C (-31 °F to +185 °F)

Storage Temperature

-51 °C to +100 °C (-60 °F to +212 °F).

Probe Temperature

Operating Temperature

-35 °C to +177 °C (-31 °F to +350 °F).

Storage Temperature

-51 °C to +177 °C (-60 °F to +350 °F).

Relative humidity

100% condensing, non-submerged, with protection of coaxial connectors.

Mechanical

Transducer Tip Material

Polyphenylene sulfide (PPS).

Transducer Case Material

AISI 303 or 304 Stainless Steel (SST).

Probe Cable

75Ω coaxial, fluoroethylene propylene (FEP) insulated.

Cable Armor (optional)

Flexible AISI 302 SST with optional FEP outer jacket.

Tensile Strength

222 N (50 lbf) probe case to probe lead, maximum.

Transmitter Weight:

0.43 kg (0.9 lbm).

Total System Weight:

0.82 kg (1.8 lbm) typical.

Ordering Information

990-AXX-BXX-CXX-DXX

A: Full-scale Option

0 4	0-4 mils pp (0-100 µm pp)
0 5	0-5 mils pp (0-125 µm pp)

B: System Length Option

5 0	5.0 metres (16.4 feet)
7 0	7.0 metres (23.0 feet)

C: Mounting Option

0 1	35 mm DIN rail clips
0 2	Bulkhead screws
0 3	DIN clips and screws

D: Agency Approval Option

0 0	Not required
0 1	CSA Division 2
0 5	CSA Division 2, ATEX Zone 0, ATEX Zone 2 and includes ABS maritime approval

3300 NSv Proximity Probes

330901

3300 NSv Probe, 1/4-28 UNF thread, without armor.

330902

3300 NSv Probe, 1/4-28 UNF thread, with armor.

330908

3300 NSv Probe, 3/8-24 UNF thread, without armor.

Extension Cable

330930-AXXX-BXX-CXX

A: Cable Length Option

- 040** 4.0 metres (13.1 feet)
- 045** 4.5 metres (14.8 feet)
- 060** 6.0 metres (19.7 feet)
- 065** 6.5 metres (21.3 feet)

B: Armor Option

- 00** Without stainless steel armor
- 01** With FEP covered stainless steel armor
- 02** With stainless steel armor
- 03** Without stainless steel armor, with connector protector
- 04** With FEP covered stainless steel armor and connector protector
- 05** With stainless steel armor and connector protector

C: Agency Approval Option

- 00** Not Required
- 05** Multiple Approvals (CSA NRTL/C and BASEEFA/CENELEC (which includes CSA Division 2)

Accessories

122115-01

990/991 Test Adapter. Package includes: 990/991 Test Adapter, 9V battery, Universal ac Adapter, Power Cord (North American), User Guide and Soft Carrying Case.

The 990/991 Test Adapter inverts and isolates the PROX OUT signal from the 990 Transmitter so that you can connect 990 Transmitters to ac-powered diagnostic equipment. The Adapter modifies the PROX OUT signal so that it matches our standard Proximitor sensor signals by performing these functions:

- Shifts the phase of the PROX OUT signal by 180° by changing the voltage from positive to negative
- Isolates the transmitter from diagnostic equipment so that equipment with different grounds will not affect the transmitter's 4-20 mA loop signal

- Reduces noise in the surrounding area from affecting the PROX OUT signal

The 990/991 Test Adapter provides the following benefits:

- Small size and weight for portable operation
- Battery or ac adapter power options
- Automatic shutoff circuit that powers down the unit when the battery is low
- 2 channels, so that you can display an orbit for XY probe configurations.

990/991 Test Adapter Accessories

123266-01

Coaxial Cable Kit. Includes 4 cables with length of 1.5 metres (5 feet) each.

02211505

Single coaxial cable with length of 1.5 metres (5 feet).

990/991 Test Adapter Spare Parts

01810700

Battery (9 volt alkaline).

02270056

Ac adapter. Has universal ac input to 9 volts dc output. Input is 108 to 132 Vac with 120 Vac nominal, or 207 to 253 Vac with 240 Vac nominal.

02198937

Power cord (for North American ac power outlet).

123133-01

User Guide.

Probe and Transmitter Accessories

02173006

Bulk cable (specify length in feet).

1.0 mm² (18 AWG), 2-conductor, twisted, shielded cable used for the 4 to 20 mA loop. Also used for the PROX OUT signal on the 990 Transmitter's terminal strip.

123655-01

Manual.

330153-05

Cable Connector Kit. Package

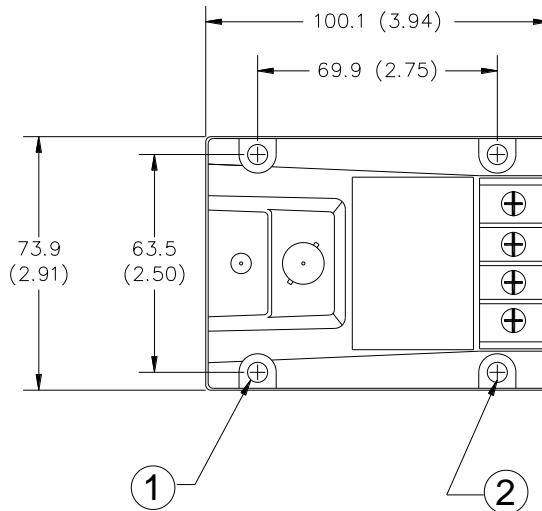
Includes 1 set of 75 Ω miniature male and female connectors, shrink tubing and 3300 Isolator Seal for protection of coaxial connectors.

163356

Connector Crimp Tool Kit. Includes one set of 75 Ω ClickLoc inserts and connector installation instructions. Supplied with carrying case.

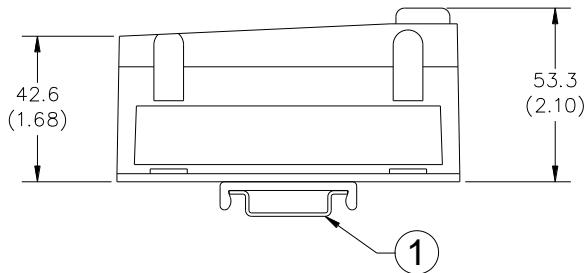
330951-01

990 Mounting Screws (spares).


Contains 4 screws.

284726

DIN rail mounting kit. Installed on the 990 Transmitter to allow mounting on 35 mm DIN rail.


Dimensional drawings

Note: All dimensions shown in millimetres (inches) unless noted otherwise.

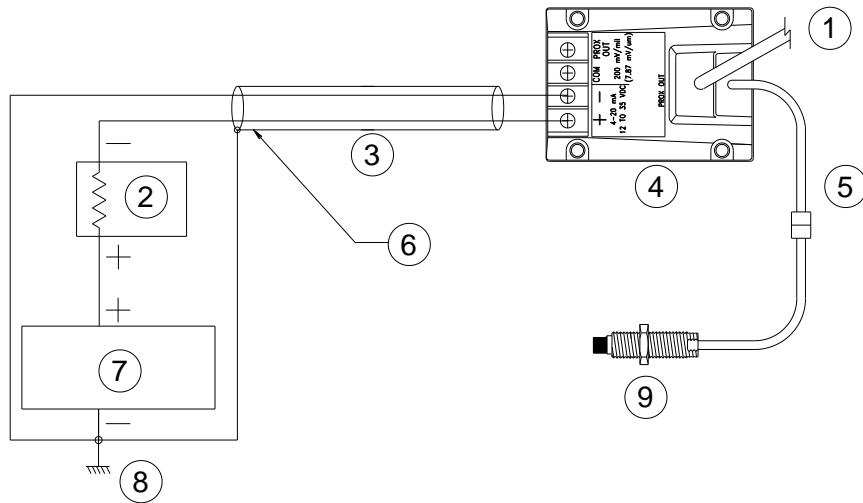
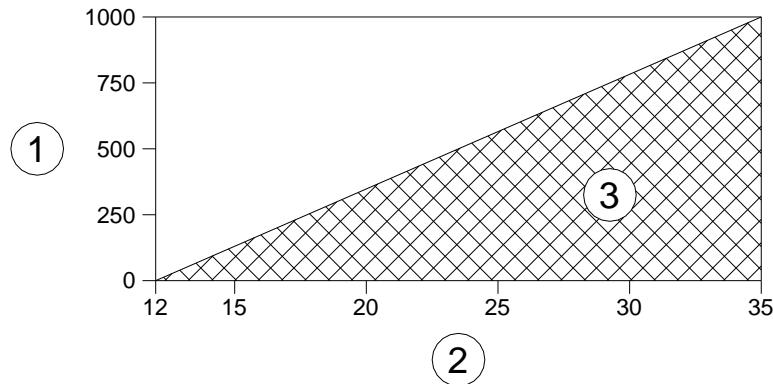

1. Mounting holes, 5.8 mm (0.23 in) diameter, 4 places
2. Bulkhead mount holes, 4 each. 6-32 x 1.326 screws provided when mounting option specified

Figure 1: 990 Vibration Transmitter Dimensions (Top View)

1. 35mm DIN rail DIN mount clips (when DIN rail mounting is specified)

Figure 2: 990 Vibration Transmitter Dimensions (Side View)



1. To test adapter 122115-01
2. Receiver
3. Cable shield
4. Transmitter
5. Extension cable
6. Recommended wiring is shielded, twisted-pair, 1.0 mm (18 AWG) (part number 02173006). Maximum length is 13 km (8 miles).
7. Power supply, $V_{PS} = 17$ to 35 Vdc
8. Common (ground)
9. Probe

Figure 7: 990 Vibration Transmitter loop wiring connections

Application Advisory

The phase of the PROX OUT signal is inverted from the standard for Bently Nevada* products. Also, connecting grounded ac-powered equipment to PROX OUT may result in a false alarm. Use test adapter 122115-01 to connect ac equipment to the transmitter. Note that the 122115-01 also inverts the PROX OUT signal.

1. Maximum loop resistance in ohms (R_{LOOP})
2. Power supply voltage (V_{PS})
3. Operating region

Figure 8: 990 Vibration Transmitter maximum loop resistance

Note:

$R_{LOOP} = 43.5 \times (V_{PS} - 12) \Omega$ maximum. If the maximum loop resistance is exceeded, then the full scale current will not reach 20 mA.

* Denotes a trademark of Bently Nevada, Inc., a wholly owned subsidiary of General Electric Company.

© 2006 – 2015 Bently Nevada, Inc. All rights reserved.

Printed in USA. Uncontrolled when transmitted electronically.

1631 Bently Parkway South, Minden, Nevada USA 89423

Phone: 775.782.3611 Fax: 775.215.2873

www.ge-mcs.com/bently